The Pivotal Role of Histamine in the Symptoms of Food Intolerance

Janice M. Joneja, Ph.D.
Histamine in Food Allergy

- Traditionally, allergy is defined as a Type I hypersensitivity (IgE-mediated) reaction
- Histamine is the most important inflammatory mediator in IgE-mediated reactions
- Principally released from mast cells
- Also released by degranulation of other granulocytes especially basophils
Histamine in Non-IgE-mediated Reactions

- IgG-mediated reactions also release histamine
 - Food-specific antibody-antigen complex formed
 - Activates complement cascade
 - Production of anaphylatoxins (C3a; C5a)
 - Action of anaphylatoxins on mast cells releases histamine and other inflammatory mediators

- Reaction is delayed in onset (up to 8 hours) compared to IgE-mediated immediate reaction
Action of Histamine in Allergy

- **Vasodilation**: widening of blood vessels
 - May cause slight drop in blood pressure
 - Increase in heart rate

- **Erythema**
 - Flushing, reddening

- **Increased vascular permeability**
 - Fluid moves from blood vessels into tissues
 - Causes swelling

- **Pruritus**
 - Histamine is the main cause of itching
Examples of Symptoms of Food Allergy

- Urticaria and angioedema
- Rhinoconjunctivitis and rhinorrhea
- Headaches
- Symptoms in the oral cavity
- Digestive tract disturbances: abdominal pain, diarrhea, nausea, vomiting

⇒ Similar symptoms can be caused by histamine intolerance
Food Allergy and Food Intolerance: What is the Difference?

- **Definitions:**

- **Food Allergy:**
 - A response of the immune system involving antigen consisting of protein or a molecule linked to a protein

- **Food Intolerance**
 - A non-immunologically mediated event, usually triggered by small molecular weight chemical substances, and biologically active components of foods
Characteristics of Food Allergy and Food Intolerance

- Food allergy:
 - Requires a “sensitizing event” that primes the immune system for future response
 - Reaction is not dose-dependent
 - Allergic potential is an inherited characteristic (is idiosyncratic)

- Food Intolerance
 - Does not require “priming”
 - Event is dose-dependent
 - Reaction is not always idiosyncratic
Histamine Intolerance

- Histamine is a biologically active derivative of an amino acid (histidine)
- Is present in many foods and beverages
- High doses are toxic to all humans: levels of >2.7 mg/kg body weight cause “histamine poisoning”
- Individual tolerance determines reactivity to small quantities
Individual Intolerance of Histamine

- Cause is most likely a defect in the catabolism of histamine
- In humans, enzymatic inactivation of histamine occurs by two pathways:
 - Diamine oxidase (DAO)
 - Histamine N-methyl transferase (HMT)
Theory of Histamine Excess

- Histamine from dietary sources and from the activity of intestinal microorganisms will normally be catabolized before gaining access to circulation.

- If enzyme activity is reduced, histamine will gain access to blood and augment the level of plasma histamine from endogenous sources.
Histamine-restricted Diet: Case studies - Subject #1

- Female aged 24 years; cashier and student

- Presenting Sx:
 - Recurrent urticaria on neck, midsection, back, arms: Hives occur on various body surfaces several times a week; present for several years
 - Dermatographia and pressure urticaria (water in shower)
 - Frequent headaches: occur almost daily
Histamine-restricted Diet: Case studies - Subject #1

- Other relevant data:
 - Seasonal rhinoconjunctivitis
 - “Borderline asthmatic” (especially in smoky environment)
 - Skin-test positive to: dust, grasses, trees, feathers
 - Respiratory tract Sx improved when living in a home with hard-wood floors
Histamine-restricted Diet:
Case studies - Subject #1

- **Outcome of histamine-restricted diet:**
 - Urticaria and pruritus completely cleared up
 - Patient experienced only one headache during the diet trial - following consumption of tomato soup
 - Consumption of Tylenol for control of headaches reduced from daily to only once (after above episode)
Histamine-restricted Diet:
Case studies - Subject #2

- Female, age 29 years. Case room nurse

- Presenting Sx:
 - Urticaria
 - Frequent diarrhea and vomiting after eating certain meals since childhood, and more severely since her latest pregnancy
 - Migraine headaches
 - “Panic attacks”
Histamine-restricted Diet: Case studies - Subject #2

- **Other relevant data:**
 - Skin-testing in childhood resulted in “whole arm swelled to an enormous size”
 - All reactions have worsened since the birth of her daughter 1 year ago
 - “Panic attacks” becoming debilitating

- **Outcome of histamine-restricted diet:**
 - Significant improvement in all symptoms
 - Complete remission of symptoms associated with “panic attack”
Indicators of Possible Histamine Intolerance

- Skin tests:
 - “Mildly positive” to multiple allergens
 - Large reaction wheal to histamine control
- Dermatographia
- Unusually sensitive to alcoholic beverages
- Sensitive to fermented foods, especially Oriental food, cheese, vinegar
- Sensitive to benzoate-containing foods, especially cinnamon, green and black tea
- Positive family history
Reduced Histamine Catabolism

- Indicators of reduced histamine metabolism have been suggested to be:
 - Elevated plasma histamine (>2 ng/ml)
 - Reduced DAO activity (<0.7 nkat/L)
- Reduced histamine catabolism, combined with IgE-mediated histamine release suggested to result in increased severity of allergy
 - may be a critical factor in anaphylaxis
Occurrence of DAO and HMT

- **DAO** occurs predominantly in:
 - intestinal mucosa - kidney
 - placenta - thymus

- **HMT** occurs more widely, in:
 - brain - spleen
 - stomach - kidney
 - lung - thymus
Function of HMT and DAO

- HMT primarily functions at the level of histamine receptors:
 - It terminates the biological activity of histamine in a wide range of organs
- The primary function of DAO seems the elimination of excess histamine
 - This is effectively achieved in controlling the amount of histamine entering the body from the digestive tract
Catabolism of Histamine

- Histamine from exogenous sources is catabolised differently from endogenous histamine
 - Exogenous histamine is metabolised predominantly via oxidative deamination by DAO
 - Endogenous histamine is metabolised more via ring N-methylation by histamine N-methyltransferase
Catabolism of Histamine (continued)

- The two systems produce different end-products:
 - DAO: imidazole compounds:
 - imidazole-acetaldehyde
 - imidazole acetic acid
 - HMT: N-methylated products:
 - N-methylhistamine
 - N-methylimidazole acetic acid
Biological Activity of Histamine Breakdown Products

- Biological activity of histamine metabolites is largely unknown
- It appears that the methylated products of HMT activity are inert
- In lab experiments imidazoleacetic acid (from DAO activity) has been reported to have behavioral effects in rats and mice
- Most do not accumulate, but are excreted in urine
Catabolism of Histamine (continued)

- The contribution of the two enzyme systems to histamine breakdown varies between tissues:
 - DAO tends to predominate in the intestine
 - HMT predominates in the brain
- However, inhibition of one pathway may switch the degradation to the other, even in the same organ
Fate of Histamine in the Body

- Histamine in the blood stream is rapidly cleared
 - May arise from mast cells and basophils
 - In research studies radiolabelled histamine injected intravenously
 - Degradation products can be detected and measured in urine

- 99% of histamine given orally is prevented from reaching the circulation
Level of Histamine Metabolites in Urine

- Seems to be greatly influenced by:
 - Level of histamine in food
 - Activity of bacteria in the large bowel (caecum and colon)
 - Possibly activity of bacteria in the vagina

- These are exogenous sources

- The level of endogenous histamine may be fairly stable, except when an allergic reaction causes increased release of histamine
Exogenous Sources of Histamine

- Amines are produced from amino acids by decarboxylation
- Result from metabolism of animal, plant, and microorganisms
- Are present in most animal and plant foods in small quantities
- Histamine is produced by decarboxylation of histidine
Histidine Decarboxylase

- Histidine decarboxylase is produced by a range of micro-organisms.
- These species are used in manufacture of fermented foods, such as:
 - Cheese
 - Fermented sausages (Salami; Bologna; Pepperoni, etc)
 - Fermented vegetables (sauerkraut)
 - Fermented soy (miso and soy sauce)
Other Food Sources of Histamine

- Fermented beverages
 - Wine
 - Beer, ale, lager, etc

- Fruits:
 - Citrus
 - Berries
 - Stone fruits
 - Pineapple
 - Dates
 - Currants

- Vegetables
 - Tomato
 - Spinach
 - Eggplant
 - Pumpkin
 - Red bean
 - Soy bean
 - Olives
Other Food Sources of Histamine

- Several species of bacteria in the gut of fish and shellfish produce histidine decarboxylase
 - When fish dies, bacteria degrade its protein
 - Bacteria can multiply every 20 minutes
 - Histamine content of ungutted fish can double every 20 minutes
- Shellfish are not gutted before consumption
- Left-over meats may be colonized by histidine decarboxylase-producing bacteria
Other Food Sources of Histamine

- Some food additives appear to release histamine:
 - Tartrazine and other azo dyes
 - Sulphites
 - Benzoates
- Some foods contain natural benzoates:
 - Cinnamon
 - Tea
 - Berries
- Egg white (ovalbumin) has been implicated in histamine release by an unknown mechanism
Histidine decarboxylase and the Resident Micro-flora

- Many bacterial species that colonize the large bowel of humans produce histidine decarboxylase
- Convert histidine in non-digested food material to histamine
- This is an additional source of exogenous histamine
- If not catabolised by DAO in situ, histamine will enter the blood circulation
Inhibitors of DAO and HMT

- Drugs that inhibit enzymes involved in histamine breakdown result in histamine excess:
 - **HMT inhibitors:**
 - Antimalarial drugs (4-aminoquinoline derivatives)
 - Anticancer drugs (pyrimidine analogs)
 - **DAO inhibitors:**
 - Copper-chelating agents (cyanides; carbamates)
 - Carbonyl group reagents (aminoguanidine; semicarbazide)
Histamine Degrading Bacteria

- Certain species of bacteria produce diamine oxidase:
 - Lactobacillus sp.
 - Leuconostoc sp.
 - Sarcina sp.
 - E. coli faecium sp.

- Capable of degrading food sources of histamine

- May reduce total histamine load

- Possible role in probiotics?